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Abstract
We describe the use of machine learning and data mining to detect and classify malicious exe-
cutables as they appear in the wild. We gathered 1,971 benign and 1,651 malicious executables
and encoded each as a training example using n-grams of byte codes as features. Such processing
resulted in more than 255 million distinct n-grams. After selecting the most relevant n-grams for
prediction, we evaluated a variety of inductive methods, including naive Bayes, decision trees, sup-
port vector machines, and boosting. Ultimately, boosted decision trees outperformed other methods
with an area under the ROC curve of 0.996. Results suggest that our methodology will scale to larger
collections of executables. We also evaluated how well the methods classified executables based
on the function of their payload, such as opening a backdoor and mass-mailing. Areas under the
ROC curve for detecting payload function were in the neighborhood of 0.9, which were smaller
than those for the detection task. However, we attribute this drop in performance to fewer training
examples and to the challenge of obtaining properly labeled examples, rather than to a failing of
the methodology or to some inherent difficulty of the classification task. Finally, we applied detec-
tors to 291 malicious executables discovered after we gathered our original collection, and boosted
decision trees achieved a true-positive rate of 0.98 for a desired false-positive rate of 0.05. This
result is particularly important, for it suggests that our methodology could be used as the basis for
an operational system for detecting previously undiscovered malicious executables.
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1. Introduction

Malicious code is “any code added, changed, or removed from a software system to intentionally
cause harm or subvert the system’s intended function” (McGraw and Morisett, 2000, p. 33). Such
software has been used to compromise computer systems, to destroy their information, and to render
them useless. It has also been used to gather information, such as passwords and credit card num-
bers, and to distribute information, such as pornography, all without the knowledge of a system’s
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users. As more and more novice users obtain sophisticated computers with high-speed connections
to the Internet, the potential for further abuse is great.

Malicious executables generally fall into three categories based on their transport mechanism:
viruses, worms, and Trojan horses. Viruses inject malicious code into existing programs, which
become “infected” and, in turn, propagate the virus to other programs when executed. Viruses come
in two forms, either as an infected executable or as a virus loader, a small program that only inserts
viral code. Worms, in contrast, are self-contained programs that spread over a network, usually
by exploiting vulnerabilities in the software running on the networked computers. Finally, Trojan
horses masquerade as benign programs, but perform malicious functions. Malicious executables do
not always fit neatly into these categories and can exhibit combinations of behaviors.

Excellent technology exists for detecting known malicious executables. Software for virus de-
tection has been quite successful, and programs such as McAfee Virus Scan and Norton AntiVirus
are ubiquitous. Indeed, Dell recommends Norton AntiVirus for all of its new systems. Although
these products use the word virus in their names, they also detect worms and Trojan horses.

These programs search executable code for known patterns, and this method is problematic.
One shortcoming is that we must obtain a copy of a malicious program before extracting the pattern
necessary for its detection. Obtaining copies of new or unknown malicious programs usually entails
them infecting or attacking a computer system.

To complicate matters, writing malicious programs has become easier: There are virus kits
freely available on the Internet. Individuals who write viruses have become more sophisticated,
often using mechanisms to change or obfuscate their code to produce so-called polymorphic viruses
(Anonymous, 2003, p. 339). Indeed, researchers have recently discovered that simple obfuscation
techniques foil commercial programs for virus detection (Christodorescu and Jha, 2003). These
challenges have prompted some researchers to investigate learning methods for detecting new or
unknown viruses, and more generally, malicious code.

Our previous efforts to address this problem (Kolter and Maloof, 2004) resulted in a fielded
prototype, built using techniques from machine learning (e.g., Mitchell, 1997) and data mining
(e.g., Hand et al., 2001). The Malicious Executable Classification System (MECS) currently detects
unknown malicious executables “in the wild,” that is, as they would appear undetected on a user’s
hard drive, without preprocessing or removing any obfuscation. To date, we have gathered 1,971
system and non-system executables, which we will refer to as “benign” executables, and 1,651
malicious executables with a variety of transport mechanisms and payloads (e.g., key-loggers and
backdoors). Although all were for the Windows operating system, it is important to note that our
approach is not restricted to this operating system.

We extracted byte sequences from the executables, converted these into n-grams, and con-
structed several classifiers: IBk, naive Bayes, support vector machines (SVMs), decision trees,
boosted naive Bayes, boosted SVMs, and boosted decision trees. In this domain, there is an issue of
unequal but unknown costs of misclassification error, so we evaluated the methods using receiver
operating characteristic (ROC) analysis (Swets and Pickett, 1982), using area under the ROC curve
as the performance metric. Ultimately, boosted decision trees outperformed all other methods with
an area under the curve of 0.996.

We delivered MECS to the MITRE Corporation, the sponsors of this project, as a research pro-
totype, and it is being used in an operational environment. Users interact with MECS through a
command line. They can add new executables to the collection, update learned models, display
ROC curves, and produce a single classifier at a specific operating point on a selected ROC curve.
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In this paper, we build upon our previous work (Kolter and Maloof, 2004) by presenting results
that suggest our estimates of the detection rate for malicious executables hold in an operational
environment. To show this, we built classifiers from our entire collection, which we gathered early
in the summer of 2003. We then applied all of the classifiers to 291 malicious executables discovered
after we gathered our collection. Detection rates for three different false-positive rates corresponded
to results we obtained through experimentation. Boosted decision trees, for example, achieved a
detect rate of 0.97 for a desired false-positive rate of 0.05.

We also present results suggesting that one can use our methodology to classify malicious exe-
cutables based on their payload’s function. For example, from 520 malicious executables containing
a mass-mailer, we were able to build a detector for such executables that achieved an area under the
ROC curve of about 0.9. Results were similar for detecting malicious executables that open back-
doors and that load viruses.

With this paper, we make three main contributions. We show how to use established methods
of text classification to detect and classify malicious executables. We present empirical results from
an extensive study of inductive methods for detecting and classifying malicious executables in the
wild. We show that the methods achieve high detection rates, even on completely new, previously
unseen malicious executables, which suggests this approach complements existing technologies and
could serve as the basis for an operational system.

In the three sections that follow, we describe related work, our data collection, and the methods
we applied. Then, in Sections 5–7, we present empirical results from three experiments. The first
involved detecting malicious executables; the second, classifying malicious executables based on
the function of their payload; and the third, evaluating fully trained methods on completely new,
previously unseen malicious executables. Finally, before making concluding remarks, we discuss
in Section 8 our results, challenges we faced, and other approaches we considered.

2. Related Work

There have been few attempts to use machine learning and data mining for the purpose of identifying
new or unknown malicious code (e.g., Lo et al., 1995; Kephart et al., 1995; Tesauro et al., 1996;
Schultz et al., 2001; Kolter and Maloof, 2004). These have concentrated mostly on PC viruses (Lo
et al., 1995; Kephart et al., 1995; Tesauro et al., 1996; Schultz et al., 2001), thereby limiting the
utility of such approaches to a particular type of malicious code and to computer systems running
Microsoft’s Windows operating system. Such efforts are of little direct use for computers running
the UNIX operating system, for which viruses pose little threat. However, the methods proposed
are general, meaning that they could be applied to malicious code for any platform, and presently,
malicious code for the Windows operating system poses the greatest threat, mainly because of its
ubiquity.

In an early attempt, Lo et al. (1995) conducted an analysis of several programs—evidently by
hand—and identified telltale signs, which they subsequently used to filter new programs. While they
attempted to extract patterns or signatures for identifying any class of malicious code, they presented
no experimental results suggesting how general or extensible their approach might be. Researchers
at IBM’s T.J. Watson Research Center have investigated neural networks for virus detection (Kephart
et al., 1995) and have incorporated a similar approach for detecting boot-sector viruses into IBM’s
Anti-virus software (Tesauro et al., 1996).
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Method TP Rate FP Rate Accuracy (%)
Signature + hexdump 0.34 0.00 49.31
RIPPER + DLLs used 0.58 0.09 83.61
RIPPER + DLL function used 0.71 0.08 89.36
RIPPER + DLL function counts 0.53 0.05 89.07
Naive Bayes + strings 0.97 0.04 97.11
Voting Naive Bayes + hexdump 0.98 0.06 96.88

Table 1: Results from the study conducted by Schultz et al. 2001.

More recently, instead of focusing on boot-sector viruses, Schultz et al. (2001) used data mining
methods, such as naive Bayes, to detect malicious code. The authors collected 4,301 programs for
the Windows operating system and used McAfee Virus Scan to label each as either malicious or
benign. There were 3,301 programs in the former category and 1,000 in the latter. Of the malicious
programs, 95% were viruses and 5% were Trojan horses. Furthermore, 38 of the malicious programs
and 206 of the benign programs were in the Windows Portable Executable (PE) format.

For feature extraction, the authors used three methods: binary profiling, string sequences, and
so-called hex dumps. The authors applied the first method to the smaller collection of 244 executa-
bles in the Windows PE format and applied the second and third methods to the full collection.

The first method extracted three types of resource information from the Windows executables:
(1) a list of Dynamically Linked Libraries (DLLs), (2) function calls from the DLLs, and (3) the
number of different system calls from each DLL. For each resource type, the authors constructed
binary feature vectors based on the presence or absence of each in the executable. For example, if
the collection of executables used ten DLLs, then they would characterize each as a binary vector of
size ten. If a given executable used a DLL, then they would set the entry in the executable’s vector
corresponding to that DLL to one. This processing resulted in 2,229 binary features, and in a similar
manner, they encoded function calls and their number, resulting in 30 integer features.

The second method of feature extraction used the UNIX strings command, which shows the
printable strings in an object or binary file. The authors formed training examples by treating the
strings as binary attributes that were either present in or absent from a given executable.

The third method used the hexdump utility (Miller, 1999), which is similar to the UNIX octal
dump (od -x) command. This printed the contents of the executable file as a sequence of hexadec-
imal numbers. As with the printable strings, the authors used two-byte words as binary attributes
that were either present or absent.

After processing the executables using these three methods, the authors paired each extraction
method with a single learning algorithm. Using five-fold cross-validation, they used RIPPER (Cohen,
1995) to learn rules from the training set produced by binary profiling. They used naive Bayes to
estimate probabilities from the training set produced by the strings command. Finally, they used
an ensemble of six naive-Bayesian classifiers on the hexdump data by training each on one-sixth of
the lines in the output file. The first learned from lines 1, 6, 12, . . . ; the second, from lines 2, 7, 13,
. . . ; and so on. As a baseline method, the authors implemented a signature-based scanner by using
byte sequences unique to the malicious executables.

The authors concluded, based on true-positive (TP) rates, that the voting naive-Bayesian classi-
fier outperformed all other methods, which appear with false-positive (FP) rates and accuracies in
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Table 1. The authors also presented ROC curves (Swets and Pickett, 1982), but did not report the
areas under these curves. Nonetheless, the curve for the single naive Bayesian classifier appears to
dominate that of the voting naive Bayesian classifier in most of the ROC space, suggesting that the
best performing method was actually naive Bayes trained with strings.

However, as the authors discuss, one must question the stability of DLL names, function names,
and string features. For instance, one may be able to compile a source program using another
compiler to produce an executable different enough to avoid detection. Programmers often use
methods to obfuscate their code, so a list of DLLs or function names may not be available.

The authors paired each feature extraction method with a learning method, and as a result,
RIPPER was trained on a much smaller collection of executables than were naive Bayes and the
ensemble of naive-Bayesian classifiers. Although results were generally good, it would have been
interesting to know how the learning methods performed on all data sets. It would have also been
interesting to know if combining all features (i.e., strings, bytes, functions) into a single training
example and then selecting the most relevant would have improved the performance of the methods.

There are other methods of guarding against malicious code, such as object reconciliation
(Anonymous, 2003, p. 370), which involves comparing current files and directories to past copies;
one can also compare cryptographic hashes. One can also audit running programs (Soman et al.,
2003) and statically analyze executables using predefined malicious patterns (Christodorescu and
Jha, 2003). These approaches are not based on data mining, although one could imagine the role
such techniques might play.

Researchers have also investigated classification methods for the determination of software au-
thorship. Most notorious in the field of authorship are the efforts to determine whether Sir Frances
Bacon wrote works attributed to Shakespeare (Durning-Lawrence, 1910), or who wrote the twelve
disputed Federalist Papers, Hamilton or Madison (Kjell et al., 1994). Recently, similar techniques
have been used in the relatively new field of software forensics to determine program authorship
(Spafford and Weeber, 1993). Gray et al. (1997) wrote a position paper on the subject of author-
ship, whereas Krsul (1994) conducted an empirical study by gathering code from programmers of
varying skill, extracting software metrics, and determining authorship using discriminant analysis.
There are also relevant results published in the literature pertaining to the plagiarism of programs
(Aiken, 1994; Jankowitz, 1988), which we will not survey here.

Krsul (1994) collected 88 programs written in the C programming language from 29 program-
mers at the undergraduate, graduate, and faculty levels. He then extracted 18 layout metrics (e.g.,
indentation of closing curly brackets), 15 style metrics (e.g., mean line length), and 19 structure met-
rics (e.g., percentage of int function definitions). On average, Krsul determined correct authorship
73% of the time. Interestingly, of the 17 most experienced programmers, he was able to determine
authorship 100% of the time. The least experienced programmers were the most difficult to classify,
presumably because they had not settled into a consistent style. Indeed, they “were surprised to find
that one [programmer] had varied his programming style considerably from program to program in
a period of only two months” (Krsul and Spafford, 1995, §5.1).

While interesting, it is unclear how much confidence we should have in these results. Krsul
(1994) used 52 features and only one or two examples for each of the 20 classes (i.e., the authors).
This seems underconstrained, especially when rules of thumb suggest that one needs ten times more
examples than features (Jain et al., 2000). On the other hand, it may also suggest that one simply
needs to be clever about what constitutes an example. For instance, one could presumably use
functions as examples rather than programs, but for the task of determining authorship of malicious
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programs, it is unclear whether such data would be possible to collect or if it even exists. Fortunately,
as we discuss in the next section, a lack of data was not a problem for our project.

3. Data Collection

As stated previously, the data for our study consisted of 1,971 benign executables and 1,651
malicious executables. All were in the Windows PE format. We obtained benign executables
from all folders of machines running the Windows 2000 and XP operating systems. We gath-
ered additional applications from SourceForge (http://sourceforge.net) and download.com
(http://www.download.com).

We obtained virus loaders, worms, and Trojan horses from the Web site VX Heavens (http:
//vx.netlux.org) and from computer-forensic experts at the MITRE Corporation, the sponsors
of this project. Some executables were obfuscated with compression, encryption, or both; some
were not, but we were not informed which were and which were not. For one small collection,
a commercial product for detecting viruses failed to identify 18 of the 114 malicious executables.
For the entire collection of 1,651 malicious executables, a commercial program failed to identify
50 as malicious, even though all were known and in the public domain. Note that, for viruses, we
examined only the loader programs; we did not include infected executables in our study.

As stated previously, we gathered this collection early in the summer of 2003. Recently, we
obtained 291 additional malicious executables from VX Heavens that have appeared after we took
our collection. As such, they were not part of our original collection and were not part of our
previous study (Kolter and Maloof, 2004). These additional executables were for a real-world,
online evaluation, which we motivate and discuss further in Section 7.

We used the hexdump utility (Miller, 1999) to convert each executable to hexadecimal codes
in an ASCII format. We then produced n-grams, by combining each four-byte sequence into a
single term. For instance, for the byte sequence ff 00 ab 3e 12 b3, the corresponding n-grams
would be ff00ab3e, 00ab3e12, and ab3e12b3. This processing resulted in 255,904,403 distinct
n-grams. One could also compute n-grams from words, something we explored and discuss further
in Section 5.2. Using the n-grams from all of the executables, we applied techniques from text
classification, which we discuss further in the next section.

4. Classification Methodology

Our overall approach drew techniques from machine learning (e.g., Mitchell, 1997), data mining
(e.g., Hand et al., 2001), and, in particular, text classification (e.g., Dumais et al., 1998; Sahami
et al., 1998). We used the n-grams extracted from the executables to form training examples by
viewing each n-gram as a Boolean attribute that is either present in (i.e., T) or absent from (i.e., F)
the executable. We selected the most relevant attributes (i.e., n-grams) by computing the information
gain (IG) for each:

IG( j) = ∑
v j∈{0,1}

∑
Ci

P(v j,Ci) log
P(v j,Ci)

P(v j)P(Ci)
,

where Ci is the ith class, v j is the value of the jth attribute, P(v j,Ci) is the proportion that the jth
attribute has the value v j in the class Ci, P(v j) is the proportion that the jth n-gram takes the value
v j in the training data, and P(Ci) is the proportion of the training data belonging to the class Ci. This
measure is also called average mutual information (Yang and Pederson, 1997).
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We then selected the top 500 n-grams, a quantity we determined through pilot studies (see
Section 5.2), and applied several learning methods, all of which are implemented in the Wakaito
Environment for Knowledge Acquisition (WEKA) (Witten and Frank, 2005): IBk, naive Bayes, a
support vector machine (SVM), and a decision tree. We also “boosted” the last three of these learn-
ers, and we discuss each of these methods in the following sections. Since the task is to detect
malicious executables, in subsequent discussion, we refer to the malicious class as the positive class
and refer to the benign class as the negative class.

4.1 Instance-based Learner

One of the simplest learning methods is the instance-based (IB) learner (Aha et al., 1991). Its
concept description is a collection of training examples or instances. Learning, therefore, is the
addition of new examples to the collection. To classify an unknown instance, the performance
element finds the example in the collection most similar to the unknown and returns the example’s
class label as its prediction for the unknown. For Boolean attributes, such as ours, a convenient
measure of similarity is the number of values two instances have in common. Variants of this
method, such as IBk, find the k most similar instances and return the majority vote of their class
labels as the prediction. Values for k are typically odd to prevent ties. Such methods are also known
as nearest neighbor and k-nearest neighbors.

One can estimate a probability distribution from the nearest neighbors and their distances. For
ROC analysis, we used the probability of the negative class as a case rating, which indicates the
degree to which an example is negative. Such ratings paired with the true labels of the test cases
are sufficient for estimating an ROC curve (Swets and Pickett, 1982), a matter we discuss further in
Section 5.1.

4.2 Naive Bayes

Naive Bayes is a probabilistic method that has a long history in information retrieval and text clas-
sification (Maron and Kuhns, 1960). It stores as its concept description the prior probability of each
class, P(Ci), and the conditional probability of each attribute value given the class, P(v j|Ci). It es-
timates these quantities by counting in training data the frequency of occurrence of the classes and
of the attribute values for each class. Then, assuming conditional independence of the attributes,
it uses Bayes’ rule to compute the posterior probability of each class given an unknown instance,
returning as its prediction the class with the highest such value:

C = argmax
Ci

P(Ci)∏
j

P(v j|Ci) .

For ROC analysis, we used the posterior probability of the negative class as the case rating.

4.3 Support Vector Machines

Support vector machines, or SVMs (Boser et al., 1992), have performed well on traditional text
classification tasks (Dumais et al., 1998; Joachims, 1998; Sahami et al., 1998), and performed well
on ours. The method produces a linear classifier, so its concept description is a vector of weights, ~w,
and an intercept or a threshold, b. However, unlike other linear classifiers, such as Fisher’s (1936),
SVMs use a kernel function to map training data into a higher-dimensioned space so that the problem
is linearly separable. It then uses quadratic programming to set ~w and b such that the hyperplane’s
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margin is optimal, meaning that the distance is maximal from the hyperplane to the closest examples
of the positive and negative classes. During performance, the method predicts the positive class if
〈~w ·~x〉−b > 0 and predicts the negative class otherwise. Quadratic programming can be expensive
for large problems, but sequential minimal optimization (SMO) is a fast, efficient algorithm for
training SVMs (Platt, 1998) and is the one implemented in WEKA (Witten and Frank, 2005). During
performance, this implementation computes the probability of each class (Platt, 2000), and for ROC

analysis, we used probability of the negative class as the rating.

4.4 Decision Trees

A decision tree is a rooted tree with internal nodes corresponding to attributes and leaf nodes cor-
responding to class labels. For symbolic attributes, branches leading to children correspond to the
attribute’s values. The performance element uses the attributes and their values of an instance to
traverse the tree from the root to a leaf. It predicts the class label of the leaf node. The learning
element builds such a tree by selecting the attribute that best splits the training examples into their
proper classes. It creates a node, branches, and children for the attribute and its values, removes
the attribute from further consideration, and distributes the examples to the appropriate child node.
This process repeats recursively until a node contains examples of the same class, at which point,
it stores the class label. Most implementations use the gain ratio for attribute selection (Quinlan,
1993), a measure based on the information gain. In an effort to reduce overtraining, most imple-
mentations also prune induced decision trees by removing subtrees that are likely to perform poorly
on test data. WEKA’s J48 (Witten and Frank, 2005) is an implementation of the ubiquitous C4.5
(Quinlan, 1993). During performance, J48 assigns weights to each class, and we used the weight of
the negative class as the case rating.

4.5 Boosted Classifiers

Boosting (Freund and Schapire, 1996) is a method for combining multiple classifiers. Researchers
have shown that ensemble methods often improve performance over single classifiers (Dietterich,
2000; Opitz and Maclin, 1999). Boosting produces a set of weighted models by iteratively learning
a model from a weighted data set, evaluating it, and reweighting the data set based on the model’s
performance. During performance, the method uses the set of models and their weights to predict
the class with the highest weight. We used the AdaBoost.M1 algorithm (Freund and Schapire, 1996)
implemented in WEKA (Witten and Frank, 2005) to boost SVMs, J48, and naive Bayes. As the case
rating, we used the weight of the negative class. Note that we did not apply AdaBoost.M1 to IBk
because of the high computational expense.

5. Detecting Malicious Executables

With our methodology defined, our first task was to examine how well the learning methods de-
tected malicious executables. We did so by conducting three experimental studies using a standard
experimental design. The first was a pilot study to determine the size of words and n-grams, and the
number of n-grams relevant for prediction. With those values determined, the second experiment
consisted of applying all of the classification methods to a small collection of executables. The third
then involved applying the methodology to a larger collection of executables, mainly to investigate
how the approach scales.
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5.1 Experimental Design

To evaluate the approach and methods, we used stratified ten-fold cross-validation. That is, we
randomly partitioned the executables into ten disjoint sets of equal size, selected one as a testing
set, and combined the remaining nine to form a training set. We conducted ten such runs using each
partition as the testing set.

For each run, we extracted n-grams from the executables in the training and testing sets. We
selected the most relevant features from the training data, applied each classification method, and
used the resulting classifier to rate the examples in the test set.

To conduct ROC analysis (Swets and Pickett, 1982), for each method, we pooled the ratings from
the iterations of cross-validation, and used labroc4 (Metz et al., 2003) to produce an empirical
ROC curve and to compute its area and the standard error of the area. With the standard error, we
computed 95% confidence intervals (Swets and Pickett, 1982).

5.2 Pilot Studies

We conducted pilot studies to determine three parameters: the size of n-grams, the size of words,
and the number of selected features. Unfortunately, due to computational requirements, we were
unable to evaluate exhaustively all methods for all settings of these parameters, so we assumed that
the number of features would most affect performance, and began our investigation accordingly.

Using the experimental methodology described previously, we extracted bytes from 476 mali-
cious executables and 561 benign executables and produced n-grams, for n = 4. (This smaller set
of executables constituted our initial collection, which we later supplemented.) Using information
gain, we then selected the best 10, 20, . . . , 100, 200, . . . , 1,000, 2,000, . . . , 10,000 n-grams, and
evaluated the performance of naive Bayes, SVMs, boosted SVMs, J48, and boosted J48. Selecting
500 n-grams produced the best results.

We fixed the number of n-grams at 500, and varied n, the size of the n-grams. We evaluated the
same methods for n = 1,2, . . . ,10, and n = 4 produced the best results. We also varied the size of
the words (one byte, two bytes, etc.), and results suggested that single bytes produced better results
than did multiple bytes.

And so by selecting the top 500 n-grams of size four produced from single bytes, we evaluated
all of the classification methods on this small collection of executables. We describe the results of
this experiment in the next section.

5.3 Experiment with a Small Collection

Processing the small collection of executables produced 68,744,909 distinct n-grams. Following
our experimental methodology, we used stratified ten-fold cross-validation, selected the 500 best
n-grams, and applied all of the classification methods. The ROC curves for these methods are in
Figure 1, while the areas under these curves (AUC) with 95% confidence intervals are in Table 2.

As one can see, the boosted methods performed well, as did the instance-based learner and
the support vector machine. Naive Bayes did not perform as well, and we discuss this further in
Section 8.
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Figure 1: ROC curves for detecting malicious executables in the small collection. Top: The entire
ROC graph. Bottom: A magnification.

Method AUC

Boosted J48 0.9836±0.0095
Boosted SVM 0.9744±0.0118
IBk, k = 5 0.9695±0.0129
SVM 0.9671±0.0133
Boosted Naive Bayes 0.9461±0.0170
J48 0.9235±0.0204
Naive Bayes 0.8850±0.0247

Table 2: Results for detecting malicious executables in the small collection. Measures are area
under the ROC curve (AUC) with a 95% confidence interval.
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Figure 2: ROC curves for detecting malicious executables in the larger collection. Top: The entire
ROC graph. Bottom: A magnification.

Method AUC

Boosted J48 0.9958±0.0024
SVM 0.9925±0.0033
Boosted SVM 0.9903±0.0038
IBk, k = 5 0.9899±0.0038
Boosted Naive Bayes 0.9887±0.0042
J48 0.9712±0.0067
Naive Bayes 0.9366±0.0099

Table 3: Results for detecting malicious executables in the larger collection. Measures are area
under the ROC curve (AUC) with a 95% confidence interval.
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5.4 Experiment with a Larger Collection

With success on a small collection, we turned our attention to evaluating the methodology on a
larger collection of executables. As mentioned previously, this collection consisted of 1,971 benign
executables and 1,651 malicious executables, while processing resulted in over 255 million distinct
n-grams of size four. We followed the same experimental methodology—selecting the 500 top n-
grams for each run of stratified ten-fold cross-validation, applying the classification methods, and
plotting ROC curves.

Figure 2 shows the ROC curves for the various methods, while Table 3 presents the areas under
these curves with 95% confidence intervals. As one can see, boosted J48 outperformed all other
methods. Other methods, such as IBk and boosted SVMs, performed comparably, but the ROC curve
for boosted J48 dominated all others.

6. Classifying Executables by Payload Function

We next attempted to classify malicious executables based on the function of their payload. That is,
rather than detect malicious executables, we investigated the extent to which classification methods
could determine whether a given malicious executable opened a backdoor, mass-mailed, or was an
executable virus. We see this aspect of our work most useful for experts in computer forensics.
A tool performing this task reliably could reduce the amount of effort to characterize previously
undiscovered malicious executables.

Our first challenge was to identify and enumerate the functions of payloads of malicious exe-
cutables. For this, we consulted VX Heavens and Symantec’s Web site. Obviously, the information
on these Web sites was not designed to support data-mining experiments, so we had to translate text
descriptions into a more structured representation.

However, a greater problem was that we could not find information for all of the malicious
executables in our collection. Indeed, we found information for only 525 of the 1,651 malicious
executables. As a result, for most categories, we had too few executables to build classifiers and
conduct experiments.

A second challenge was that many executables fell into multiple categories. That is, many were
so-called multi-class examples, a problem common in bioinformatics and document classification.
For instance, a malicious executable might open a backdoor and log keystrokes, so it would be in
both the backdoor and keylogger classes.

One approach is to create compound classes, such as backdoor+keylogger, in addition to the
simple classes (e.g., backdoor and keylogger). One immediate problem was that we had too few
examples to support this approach. We had a number of backdoors, a number of keyloggers, but
had few executables that were both backdoors and keyloggers.

As a result, we chose to use one-versus-all classification. This involves grouping all of, say, the
executables with backdoor capabilities into the backdoor class, regardless of their other capabilities
(e.g., key logging), and placing all other executables into a non-backdoor class. One then builds a
detector for the backdoor class, and does the same for all other classes.

To make a decision, one applies all of the detectors and reports the predictions of the individual
classifiers as the overall prediction of the executable. For example, if the detectors for backdoor and
for keylogger report hits, then the overall prediction for the executable is backdoor+keylogger.
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Figure 3: ROC curves for detecting malicious executables with mass-mailing capabilities. Left: The
entire ROC graph. Right: A magnification.

Payload
Method

Mass Mailer Backdoor Virus
Boosted J48 0.8888±0.0152 0.8704±0.0161 0.9114±0.0166
SVM 0.8986±0.0145 0.8508±0.0171 0.8999±0.0175
IBk, k = 5 0.8829±0.0155 0.8434±0.0174 0.8975±0.0177
Boosted SVM 0.8758±0.0160 0.8625±0.0165 0.8775±0.0192
Boosted Naive Bayes 0.8773±0.0159 0.8313±0.0180 0.8370±0.0216
J48 0.8315±0.0184 0.7612±0.0205 0.8295±0.0220
Naive Bayes 0.7820±0.0205 0.8190±0.0185 0.7574±0.0250

Table 4: Results for detecting payload function. Measures are area under the ROC curve (AUC) with
a 95% confidence interval.
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Figure 4: ROC curves for detecting malicious executables with backdoor capabilities. Left: The
entire ROC graph. Right: A magnification.
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Figure 5: ROC curves for detecting executable viruses. Left: The entire ROC graph. Right: A
magnification.

6.1 Experimental Design

We followed an experimental design similar to that described previously, but for each of the func-
tional categories, we created a data set using only malicious executables. We divided it into two
subsets, one containing executables that performed the function and one containing those that did
not. We then proceeded as before, using stratified ten-fold cross-validation, applying and evaluating
the methods, and constructing ROC curves.

6.2 Experimental Results

We present results for three functional categories: mass-mailer, backdoor, and executable virus.
Figures 3–5 present the ROC curves for seven methods on the task of detecting executables that mass-
mail, open a backdoor, or contain an executable virus. The areas under these ROC curves appear
in Table 4. Overall, the results are not as good as those in the experiment that involved detecting
malicious executables in our full collection of malicious executables, and we discuss possible causes
in Section 8.

The relative performance of the methods on this task was roughly the same as in previous ex-
periments. Naive Bayes generally did not perform as well as the other methods, and we discuss the
reasons for this in Section 8. Boosted J48 and the SVM were again the best performing methods,
although on this task, the SVM performed slightly better than on previous tasks.

7. Evaluating Real-world, Online Performance

Finally, to estimate what performance might be in an operational environment, we applied the meth-
ods to 291 malicious executables discovered after we gathered our original collection. In the pre-
vious sections, we generally followed a common experimental design in machine learning and data
mining: We randomly partitioned our data into training and testing sets, applied algorithms to the
training set, and evaluated the resulting detectors on the testing set. However, one problem with this
design for this application is that learning methods were trained on recent malicious executables
and tested on older ones. Crucially, this design does not reflect the manner in which a system based
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Desired False-positive Rate
Method 0.01 0.05 0.1

P A P A P A

Boosted J48 0.94 0.86 0.99 0.98 1.00 1.00
SVM 0.82 0.41 0.98 0.90 0.99 0.93
Boosted SVM 0.86 0.56 0.98 0.89 0.99 0.92
IBk, k = 5 0.90 0.67 0.99 0.81 1.00 0.99
Boosted Naive Bayes 0.79 0.55 0.94 0.93 0.98 0.98
J48 0.20 0.34 0.97 0.94 0.98 0.95
Naive Bayes 0.48 0.28 0.57 0.72 0.81 0.83

Table 5: Results of a real-world, online evaluation. Predicted (P) versus actual (A) detect rates for
three desired false-positive rates on 291 new, previously unseen malicious executables.
Predicted detect rates are from Figure 2 and the experiment described in Section 5.4.

on our methodology would be used. In this section, we rectify this and describe an experiment
designed to better evaluate the real-world, online performance of the detectors.

As mentioned previously, we gathered our collection of executables in the summer of 2003. In
August of 2004, we retrieved from VX Heavens all of the new malicious executables and selected
those that were discovered after we gathered our original collection. This required retrieving the
3,082 new executables that were in the PE format and using commercial software to verify inde-
pendently that each executable was indeed malicious. We then cross-referenced the names of the
verified malicious executables with information on various Web sites to produce the subset of ma-
licious executables discovered between July of 2003 and August of 2004. There were 291 such
executables.

7.1 Experimental Design

To conduct this experiment, we built classifiers from all of the executables in our original collection,
both malicious and benign. We then selected three desired false-positive rates, 0.01, 0.05, and
0.1. This, in turn, let us select three decision thresholds from each ROC curve for each method.
Using these thresholds to parameterize specific classifiers, we applied them to each of the 291 new
malicious executables in the order of their date of discovery.

7.2 Experimental Results

Rather than analyze all of these results, we will discuss the actual (A) detection rates for the desired
false-positive rate of 0.05.1 As one can see, boosted decision trees detected about 98% of the new
malicious executables, missing 6 of 291 malicious executables. For some applications, six may be
too many, but if one is willing to tolerate a false-positive rate of 0.1, then one can achieve a perfect
detect rate, at least on these 291 malicious executables.

1. Our reasoning was that, for most operational scenarios, a desired false-positive rate of 0.1 would be too high, and
the detect rates achieved for a desired false-positive rate of 0.01 were too low. Knowledge of a given operational
environment would presumably help us choose a more appropriate decision threshold.
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However, it is also important to compare the actual detection rates to the predicted rates from
the experiment using our larger collection of executables, discussed in Section 5.4. As one can
see in Table 5 by comparing the predicted (P) and actual (A) detection rates for a desired false-
positive rate of 0.05, four methods (SVM, boosted SVM, IBk, and J48) performed worse on the new
malicious executables, two methods (boosted J48 and boosted naive Bayes) performed about as
well under both conditions, and one method (naive Bayes) performed much better. Nonetheless,
we determined that boosted decision trees achieved the best performance overall, not only in terms
of the best actual performance on the new malicious executables, but also in terms of matching the
predicted performance from the experiment involving the larger collection of executables.

8. Discussion

To date, our results suggest that methods of machine learning, data mining, and text classification
are appropriate and useful for detecting malicious executables in the wild. Boosted classifiers, IBk,
and a support vector machine performed exceptionally well given our current data collection. That
the boosted classifiers generally outperformed single classifiers echos the conclusion of several
empirical studies of boosting (Bauer and Kohavi, 1999; Breiman, 1998; Dietterich, 2000; Freund
and Schapire, 1996), which suggest that boosting improves the performance of unstable classifiers,
such as J48, by reducing their bias and variance (Bauer and Kohavi, 1999; Breiman, 1998). Boosting
can adversely affect stable classifiers (Bauer and Kohavi, 1999), such as naive Bayes, although in
our study, boosting naive Bayes improved performance. Stability may also explain why the benefit
of boosting SVMs was inconclusive in our study (Breiman, 1998).

Our experimental results suggest that the methodology will scale to larger collections of executa-
bles. The larger collection in our study contained more than three times the number of executables
in the smaller collection. Yet, as one can see in Tables 2 and 3, the absolute performance of all of
the methods was better for the larger collection than for the smaller one. The relative performance
of the methods changed somewhat. For example, the SVM moved from fourth to second, displacing
the boosted SVMs and IBk.

Regarding our results for classifying executables by function, we suspect the methods did not
perform as well as they did on the detection task for two reasons. First, with the classification
task, the algorithms must make finer distinctions between malicious and benign executables. For
example, a malicious executable that mass-mails will be similar in some respects to a legitimate
e-mail client. Such similarity could account for the lower performance.

Indeed, in pilot studies, we attempted to use the methods to distinguish between benign and
malicious executables that edited the registry. Performance on this task was lower than on the
others, and we suspect this is because editing the registry is a function common to many executables,
malicious and benign. Such similarity could have accounted for the lower performance.

Second, we suspect that, on the classification task, performance suffered because the algorithms
built classifiers from fewer examples. Performance on the detection task improved when we added
additional examples, and we suspect that, likewise, with additional examples, we will obtain similar
improvements in accuracy on the classification task.

Regarding our online evaluation of the methods, we believe the experimental design represents
how such methods would be used in a commercial or operational system. We did not conduct this
experiment from the outset (Kolter and Maloof, 2004) because it was impossible to determine the
date of discovery of all of the malicious executables in our collection. Moreover, to conduct the ideal
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030b0105 = T
| 0b010219 = T: malicious (2.0)
| 0b010219 = F
| | 0000000a = T
| | | 0001ff25 = T
| | | | 0c100001 = T
| | | | | 0000c700 = T: benign (6.0)
| | | | | 0000c700 = F: malicious (2.0)
| | | | 0c100001 = F: malicious (2.0)
| | | 0001ff25 = F: benign (10.0)
| | 0000000a = F: benign (253.0)
030b0105 = F
...

Figure 6: Portion of a decision tree built from benign and malicious executables.

experiment, we would also need to collect different versions of benign executables and when they
were released. It was easier to take one “snapshot” of existing malicious and benign executables,
conduct traditional experiments, and then, at a later date, retrieve any new malicious executables for
the online experiment.

During the processing of the 291 new malicious executables, we did not update the classifiers
when there was a mistake or a so-called “near miss”. Clearly, in an operational setting, if the system
were to make a mistake or to detect a malicious executable with low certainty, then, ideally, one
would add it to the collection and reprocess everything. (One would also have to do the same for
benign executables.) However, because of the computational overhead, we did not do this, and as
a consequence, our results are pessimistic. Presumably, all of the methods would perform better
with the benefit of additional training data. Nonetheless, for some methods, the results are quite
promising, as shown in Table 5.

Visual inspection of the concept descriptions yielded interesting insights, but further work is
required before these descriptions will be directly useful for computer-forensic experts. Figure 6
shows a portion of one decision tree built from benign and malicious executables.

As an example, the first branch of the tree indicates that if an executable contains the n-grams
030b0105 and 0b010219, then it is malicious. After an analysis of our collection of malicious
executables, we discovered that both n-grams were from the PE header, implying that a single file
contained two such headers. More investigation revealed that two executables in our collection
contained another executable, which explains the presence of two PE headers in a single file. This
was an interesting find, but it represented an insignificantly small portion of the malicious programs.

Leaf nodes covering many executables were often at the end of long branches where one set of
n-grams (i.e., byte codes) had to be present and another set had to be absent. Understanding why
the absence of byte codes was important for an executable being malicious proved to be a difficult
and often impossible task.

It was fairly easy to establish that some n-grams in the decision tree were from string sequences
and that some were from code sequences, but some were incomprehensible. For example, the n-
gram 0000000a appeared in 75% of the malicious executables, but it was not part of the executable
format, it was not a string sequence, and it was not a code sequence. We have yet to determine its
purpose.
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Nonetheless, for the large collection of executables, the size of the decision trees averaged over
10 runs was about 90 nodes. No tree exceeded 103 nodes. The heights of the trees never exceeded
13 nodes, and subtrees of heights of 9 or less covered roughly 99.3% of the training examples.
While these trees did not support a thorough forensic analysis, they did compactly encode a large
number of benign and malicious executables.

Unfortunately, the best performing method did not always produce the most readable concept
descriptions. Of the methods we considered, J48 is mostly likely to produce descriptions useful
for computer-forensic experts. However, J48 was not the best performing method in any of our
experiments. The best performing method was boosted J48. While it is true that this method also
produces decision trees, it actually produces a set of weighted trees. We discussed the difficulties
of analyzing a single tree, so it is unclear if analyzing an ensemble of weighted trees will be helpful
for experts. And since J48 was not the best performing method, we may also have to question the
utility of analyzing a single decision tree when its performance is subpar.

We estimated that about 20–25% of the malicious executables in our collection were obfuscated
with either compression or encryption. To the best of our knowledge, none of the benign executables
were obfuscated. Early in our investigation, we conjectured that obfuscation would likely interfere
with classifying payload function, but that it would not do so with detecting whether the executable
is malicious. Our results on these tasks seem to support our conjecture: We were able to detect
malicious executables with high accuracy, so it is unlikely that obfuscation affected performance.
On the other hand, we were not able to achieve the same high accuracy when classifying payload
function, and the presence of obfuscation may have contributed to this result.

With the detection task, it is possible that the methods simply learned to detect certain forms
of obfuscation, such as run-time compression, but this does not seem problematic as long as those
forms are correlated with malicious executables. Based on our collection and our own investigation,
this is presently the case.

To place our results in context with the study of Schultz et al. (2001), they reported that the
best performing approaches were naive Bayes trained on the printable strings from the program
and an ensemble of naive-Bayesian classifiers trained on byte sequences. They did not report areas
under their ROC curves, but visual inspection of these curves suggests that with the exception of
naive Bayes, all of our methods outperformed their ensemble of naive-Bayesian classifiers. It also
appears that our best performing methods, such as boosted J48, outperformed their naive Bayesian
classifier trained with strings.

These differences in performance could be due to several factors. We analyzed different types of
executables: Their collection consisted mostly of viruses, whereas ours contained viruses loaders,
worms, and Trojan horses. Ours consisted of executables in the Windows PE format; about 5.6% of
theirs was in this format.

Our better results could be due to how we processed byte sequences. Schultz et al. (2001) used
non-overlapping two-byte sequences, whereas we used overlapping sequences of four bytes. With
their approach it is possible that a useful feature (i.e., a predictive sequence of bytes) would be split
across a boundary. This could explain why in their study string features appeared to be better than
byte sequences, since extracted strings would not be broken apart. Their approach produced much
less training data than did ours, but our application of feature selection reduced the original set of
more than 255 million n-grams to a manageable 500.

Our results for naive Bayes were poor in comparison to theirs. We again attribute this to the
differences in data extraction methods. Naive Bayes is well known to be sensitive to conditionally
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dependent attributes (Domingos and Pazzani, 1997). We used overlapping byte sequences as at-
tributes, so there were many that were conditionally dependent. Indeed, after analyzing decision
trees produced by J48, we found evidence that overlapping sequences were important for detection.
Specifically, some subpaths of these decision trees consisted of sequentially overlapping terms that
together formed byte sequences relevant for prediction. Schultz et al.’s (2001) extraction methods
would not have produced conditionally dependent attributes to the same degree, if at all, since they
used strings and non-overlapping byte sequences.

Regarding our experimental design, we decided to pool a method’s ratings and produce a single
ROC curve (see Section 5.1) because labroc4 (Metz et al., 2003) occasionally could not fit an ROC

curve to a method’s ratings from a single fold of cross-validation (i.e., the ratings were degener-
ate). We also considered producing ROC convex hulls (Provost and Fawcett, 2001) and cost curves
(Drummond and Holte, 2000), but determined that traditional ROC analysis was appropriate for our
results (e.g., the curve for boosted J48 dominated all other curves).

In our study, there was an issue of high computational overhead. Selecting features was ex-
pensive, and we had to resort to a disk-based implementation for computing information gain,
which required a great deal of time and space to execute. However, once selected, WEKA’s (Witten
and Frank, 2005) Java implementations executed quickly on the training examples with their 500
Boolean attributes.

The greatest impediment to our investigation was the absence of detailed, structured information
about the malicious executables in our collection. As mentioned previously, we had 1,651 malicious
executables, but found information for only 525 that was sufficient to support our experiment on
function classification, described in Section 6.

We arduously gathered this information by reading it from Web pages. We contemplated im-
plementing software to extract this information, but abandoned this idea because of the difficulty
of processing such semi-structured information and because of that information’s ad hoc nature.
As an example, for one executable, the description that it opened a backdoor appeared in a section
describing the executable’s payload, whereas the same information for another executable appeared
in a section describing how the malicious executable degrades performance. This suggests the need
for a well-engineered database for storing information about malicious software.

As another example, we found incomplete information about the dates of discovery of many of
the malicious executables. With this information, we could have evaluated our methods on the mali-
cious executables in the order they were discovered. This would have been similar to the evaluation
we conducted using the 291 previously unseen malicious executables, as described in Section 7,
but having complete information for all of the executables would have resulted in a much stronger
evaluation.

However, to conduct a proper evaluation, we would also needed a comparable collection of
benign executables. It seems unlikely that we would be able to reconstruct realistic snapshots of
complete Windows systems over a sufficient period of time. Snapshots of the system software might
be possible, but creating a historical archive of application software and their different versions
seems all but impossible. Such snapshots would be required for a commercial system, and creating
such snapshots would be easier going forward.

In terms of our approach, it is important to note that we have investigated other methods of
data extraction. For instance, we examined whether printable strings from the executable might
be useful, but reasoned that subsets of n-grams would capture the same information. Indeed, after
inspecting some of the decision trees that J48 produced, we found evidence suggesting that n-grams
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formed from strings were being used for detection. Nonetheless, if we later determine that explicitly
representing printable strings is important, we can easily extend our representation to encode their
presence or absence. On the other hand, as we stated previously, one must question the use of
printable strings or DLL information since compression and other forms of obfuscation can mask
this information.

We also considered using disassembled code as training data. For malicious executables using
compression, being able to obtain a disassembly of critical sections of code may be a questionable
assumption. Moreover, in pilot studies, a commercial product failed to disassemble some of our
malicious executables.

We considered an approach that runs malicious executables in a “sandbox” and produces an au-
dit of the machine instructions. Naturally, we would not be able to execute completely the program,
but 10,000 instructions may be sufficient to differentiate benign and malicious behavior. We have
not pursued this idea because of a lack of auditing tools, the difficulty of handling large numbers
of interactive programs, and the inability of detecting malicious behavior occurring near the end of
sufficiently long programs. Moreover, some malicious programs can detect when they are being
executed by a virtual machine and either terminate execution or avoid executing malicious sections
of code.

There are at least two immediate commercial applications of our work. The first is a system,
similar to MECS, for detecting malicious executables. Server software would need to store all known
malicious executables and a comparably large set of benign executables. Due to the computational
overhead of producing classifiers from such data, algorithms for computing information gain and
for evaluating classification methods would have to be executed incrementally, in parallel, or both.

Client software would need to extract only the top n-grams from a given executable, apply a
classifier, and predict. Updates to the classifier could be made remotely over the Internet. Since
the best performing method may change with new training data, it will be critical for the server
to evaluate a variety of methods and for the client to accommodate any of the potential classifiers.
Used in conjunction with standard signature methods, these methods could provide better detection
of malicious executables than is currently possible.

The second is a system oriented more toward computer-forensic experts. Even though work
remains before decision trees could be used to analyze malicious executables, one could use IBk to
retrieve known malicious executables similar to a newly discovered malicious executable. Based
on the properties of the retrieved executables, such a system could give investigators insights into
the new executable’s function. While it remains an open issue whether an executable’s statistical
properties are predictive of its function, we have presented evidence suggesting it may be possible
to achieve useful detection rates when predicting function.

9. Concluding Remarks

We considered the application of techniques from machine learning, data mining, and text classifi-
cation to the problem of detecting and classifying unknown malicious executables in the wild. After
evaluating a variety of inductive methods, results suggest that, for the task of detecting malicious
executables, boosted J48 produced the best detector with an area under the ROC curve of 0.996.

We also investigated the ability of these methods to classify malicious executables based on their
payload’s function. For payloads that mass-mail, open a backdoor, and inject viral code, boosted
J48 again produced the best detectors with areas under the ROC curve around 0.9. While overall
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the performance on this task was not as impressive as that on the detection task, we contend that
performance will improve with the removal of obfuscation and with additional training examples.

Finally, boosted J48 also performed well on the task of detecting 291 malicious executables
discovered after we gathered our original collection, an evaluation that best reflects how one might
use the methodology in an operational environment. Indeed, our methodology resulted in a fielded
prototype called MECS, the Malicious Executable Classification System, which we delivered to the
MITRE Corporation.

In future work, we hope to remove obfuscation from our malicious executables and rerun the
experiment on classifying payload function. Removing obfuscation and producing “clean” executa-
bles may prove challenging, but doing so would provide the best opportunity to evaluate whether
obfuscation affected the performance of the classifiers.

We also plan to investigate the similarity of malicious executables and how such executables
change over time. In this regard, we have not yet attempted to cluster our collection of executables,
but doing so may yield two insights. First, if a new, unanalyzed malicious executable is similar to
others that have been analyzed, it may help computer-forensic experts conduct a faster analysis of
the new threat.

Second, if we add information about when the executables were discovered, we may be able to
determine how malicious executables were derived from others. Although there is a weak analog
between DNA sequences and byte codes from executables, we may be able to use a collection of
malicious executables to build phylogenetic trees that may elucidate “evolutionary relationships”
existing among them.

We anticipate that inductive approaches, such as ours, is but one process in an overall strategy
for detecting and classifying “malware.” When combined with approaches that use cryptographic
hashes, search for known signatures, execute and analyze code in a virtual machine, we hope that
such a strategy for detecting and classifying malicious executables will improve the security of
computers. Indeed, the delivery of MECS to MITRE has provided computer-forensic experts with
a valuable tool. We anticipate that continued investigation of inductive methods for detecting and
classifying malicious executables will yield additional tools and more secure systems.
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